
 
 Abstract—Speech recognition is still a growing field of 

importance.  The growth in computing power will open its 
strong potentials for full use in the near future. Spectrum 
analysis is an elementary operation in speech recognition. Fast 
Fourier Transform (FFT) has been a traditional technique to 
analyze frequency spectrum of the signals in speech recognition. 
FFT is computationally complex especially with imaginary 
numbers. The Discrete Tchebichef Transform (DTT) is 
proposed instead of the popular FFT. DTT has lower 
computational complexity and it does not require complex 
transform dealing with imaginary numbers. This paper 
proposes a novel approach based on 256 discrete orthonormal 
Tchebichef polynomials as efficient technique to analyze a 
vowel and a consonant in spectral frequency of speech 
recognition. The comparison between 1024 discrete 
orthonormal Tchebichef transform and 256 discrete 
orthonormal Tchebichef transform has been done. The 
preliminary experimental results show that 256 DTT has the 
potential to be more efficient to transform time domain into 
frequency domain for speech recognition. 256 DTT produces 
simpler output than 1024 DTT in frequency spectrum. At the 
same time, 256 Discrete Tchebichef Transform can produce 
concurrently four formants F1, F2, F3 and F4.    

 
Index Terms—Speech recognition, spectrum analysis, Fast 

Fourier Transforms and Discrete Tchebichef Transform.  
 

I. INTRODUCTION 
Spectrum analysis method using Fourier transform is 

widely used for digital signal processing applicable for 
spectrum analysis of speech recognition. Speech recognition 
requires heavy processing on large sample windowed data. 
Typically, each window consumes 1024 sample data. Since 
the window is large, an efficient FFT has been employed to 
 speed up the process. 1024 sample data FFT computation is 
considered the main basic algorithm for several digital 
signals processing [1]. FFT is a traditional technique to 
analyze frequency spectrum of speech recognition. The FFT 
is often used to compute numerical approximations to 
continuous Fourier. However, a straightforward application 
of the FFT often requires a large FFT to be performed even 
though most of the input data may be zero [2]. FFT is a 
complex transform which requires operating on imaginary 
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numbers. It is a complex exponential function that defines a 
complex sinusoid for a given frequency. 

The Discrete Tchebichef Transform (DTT) is another 
transform method based on discrete Tchebichef polynomials 
[3][4]. This paper proposes an approach based on 256 
discrete orthonormal Tchebichef polynomials to analyze 
spectral frequency for speech recognition. DTT is used to 
avoid the complex computation of FFT. DTT has a potential 
next candidate to transform time domain into frequency 
domain in speech recognition. DTT has a lower 
computational complexity and it does not require complex 
transform unlike continuous orthonormal transforms [5]. 
DTT does not involve any numerical approximation on 
friendly domain. The Tchebichef polynomials have unit 
weight and algebraic recurrence relations involving real 
coefficients. These factors in effect make DTT suitable for 
transforming the signal from time domain into frequency 
domain for speech recognition.  

DTT has been applied in several computer vision and 
image processing application in previous work. For 
examples, DTT is used in image analysis [6], texture 
segmentation [7], image watermarking [8], image 
reconstruction [3][9], image compression [10] and spectrum 
analysis of speech recognition [5][11].  

The organization of the paper is as follows. The next 
section gives a brief description on FFT and DTT. The 
matrix implementation of orthonormal tchebichef 
polynomials are presented in section III.  Section IV shows 
the experiment results of speech signal coefficient of 
Discrete Tchebichef Transform, spectrum analysis, 
frequency formants and time taken performance. Section V 
presents the comparison of spectrum analysis, frequency 
formants and time taken performance between 1024 DTT 
and 256 DTT. Finally, section VI concludes the comparison 
of spectrum analysis using 1024 DTT and 256 DTT in terms 
of speech recognition.  

 

II. TRANSFORMATION DOMAIN 
FFT is an efficient algorithm that can perform Discrete 

Fourier Transform (DFT). FFT is applied in order to convert 
time domain signals ݔ(݆) into the frequency domain  ܺ(݇). 
Let the sequence of ܰ  complex numbers ݔ଴, … ,  ேିଵݔ
represent a given time domain windowed signal. The 
following equation defines the Fast Fourier Transform 
of ݔ(݆):  

 ܺ(݇) = ෍ ଶగ௜ேି݁(݆)ݔ  (௝ିଵ)(௞ିଵ)  ே
௝ୀଵ  (1)
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where ݇ = 0, … , ܰ −  ܰ is the sample at time index ݆ and ݅ is the imaginary number√−1. Then,  ܺ(݇) is a vector of (݆)ݔ ,1
values at frequency index ݇ corresponding to the magnitude 
of the sine waves resulting from the decomposition of the 
time indexed signal. The inverse FFT is given in the 
following equation: 
(݆)ݔ  = 1ܰ ෍ ܺ(݇)݁(ିଶగ௜)ே ି(௝ିଵ)(௞ିଵ)  ே

௞ୀଵ  (2)

 
The FFT takes advantage of the symmetry and periodicity 

properties of the Fourier Transform to reduce computation 
time. It reduced the time complexity from ܱ(݊ଶ)  to ܱ(݊ log ݊). In this process, the transform is partitioned into a 
sequence of reduced-length transforms that is collectively 
performed with reduced computation [12]. The FFT 
technique also has performance limitation as the method. 
FFT is operating a complex field computationally dealing 
with imaginary numbers. FFT has not been changed and 
upgraded unlike Number Theoretic Transform (NTT). 

Discrete orthonormal Tchebichef transform is an 
approach based on Tchebichef polynomials. For a given 
positive integer ܰ  (the vector size) and a value ݊  in the 
range  ሾ1, ܰ − 1ሿ , the ܰ order orthonormal Tchebichef 
polynomials ݐ௞(݊), ݊ = 1, 2, … , ܰ − 1  are defined using the 
following recurrence relation [9]:  

(݊)଴ݐ   = ଵ√ே , (3)

௞(0)ݐ =  ඨܰ − ݇ܰ + ݇ ඨ2݇ + 12݇ − 1 ௞ିଵ(0), (4)ݐ

௞(1)ݐ =  ቊ1 + ݇(1 + ݇)1 − ܰ ቋ (݊)௞ݐ௞(0), (5)ݐ = ݊)௞ݐଵߛ − 1) + ݊)௞ݐଶߛ − 2), (6)݇ = 1, 2, … , ܰ − 1,  ݊ = 2, 3, … , ቀேଶ − 1ቁ,  
where ߛଵ = −݇(݇ + 1) − (2݊ − 1)(݊ − ܰ − 1) − ݊݊(ܰ − ݊) ଶߛ(7) , = (݊ + 1)(݊ − ܰ − 1)݊(ܰ − ݊) , (8)
 
The forward Discrete Tchebichef Transform (DTT) of order ܰ is defined as follow: 
 ܺ(݇) =  ෍ ௞(݊),ேିଵݐ(݊)ݔ

௡ୀ଴  (9)݇ = 0, 1, … , ܰ − 1, 
 
where ܺ(݇) denotes the coefficient of orthonormal 
Tchebichef polynomials. ݔ(݊) is the sample of speech signal 
at time index ݊. The inverse DTT is given in the following 
equation:  
(݊)ݔ  =  ෍ ௞(݊),ேିଵݐ(݇)ܺ

௞ୀ଴  (10)݊ = 0, 1, … , ܰ − 1, 
 
The orthonormal Tchebichef polynomials are proper 
especially when Tchebichef polynomials of large degree are 

required to be evaluated. The orthonormal Tchebichef 
polynomials matches for signal processing which have large 
sample data represents speech signal. The Tchebichef 
transform involves only algebraic expressions and it can be 
compute easily using a set of recurrence relations (3)-(8) 
above. 

III. THE IMPLEMENTATION OF DISCRETE ORTHONORMAL 
TCHEBICHEF TRANSFORM 

A. Sample Speech Signal 
The voice used in this experiment is the vowel ‘O’ and 

the consonant ‘RA’ from the International Phonetic 
Alphabet [13]. A speech signal has a sampling rate 
frequency component of about 11 KHz. The sample sounds 
of vowel ‘O’ is shown in the Fig. 1.   

Figure 1. The sample sound of the vowel ‘O’. 

B. Silence Detector 
Speech signals are highly redundant and contain a variety 

of background noise. At some level of the background noise 
which interferes with the speech, it means that silence 
regions have quite a height zero-crossings rate as the signal 
changes from one side of the zero amplitude to the other and 
back again. For this reason, the threshold is included to 
remove any zero-crossings. In this experiment, the threshold 
is preset to be 0.1. This means that any zero-crossings that 
start and end within the range of ݐ௔, where −0.1 < ௔ݐ < 0.1, 
are not included in the total number of zero-crossings in that 
window. 

C. Pre-emphasis 
Pre-emphasis is a technique used in speech processing to 

enhance high frequencies of the signal. It reduces the high 
spectral dynamic range. Therefore, by applying pre-
emphasis, the spectrum is flattened, consisting of formants 
of similar heights. Pre-emphasis is implemented as a first-
order Finite Impulse Response (FIR) filter defined as: 

(݊)ݔ  = ܵ(݊) − ሾ݊ܵߙ − 1ሿ (11)
 
where ߙ is the pre-emphasis coefficient, the value used for ߙ 
is typically around 0.9 to 0.95. ܵ(݊) is the sample data which 
represents speech signal with ݊ is 0 ≤ ݊ ≤ ܰ − 1, where ܰ is 
the sample size which represent speech signal. The speech 
signals after pre-emphasis of the vowel ‘O’ [13] is shown in 
Fig. 2. 
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Figure 2. Speech Signal after Pre-emphasis. 

D. Speech Signal Windowed 
The sample of vowel ‘O’ and consonant ‘RA’ have 4096 

sample data which representing speech signal. The sample 
of speech signal is windowed into several frames. On one 
hand, speech signal of the vowel 'O' and consonant ‘RA’ are 
windowed into four frames. Each window consumes 1024 
sample data as illustrated in Fig. 3.  

Figure 3. Speech Signal Windowed into Four Frames. 

In this experiment, the fourth frame for 3073-4096 sample 
data is being used for analysis and evaluated using 1024 
discrete orthonormal Tchebichef polynomials and FFT. The 
1024 discrete orthonormal Tchebichef polynomials are 
shown in the Fig. 4.  

Figure 4. The First Five 1024 Discrete Orthonormal Tchebichef 
Polynomials ݐ௞(݊) for ݇ = 0, 1, 2, 3 and 4. 

On the other hand, the sample speech signal of the vowel 'O' 
and consonant ‘RA’ are windowed into sixteen frames. Each 
window consists of 256 sample data which representing 
speech signal. The sample speech signals windowed into 
sixteen frames are shown in Fig. 5. In this study, the third 
frame for 513-768 sample data is used to compute using 256 
discrete orthonormal Tchebichef polynomials as shown in 
Fig. 6. 

Figure 5. Speech Signal Windowed into Sixteen Frames. 

Figure 6. The First Five 256 Discrete Orthonormal Tchebichef Polynomials ݐ௞(݊) for ݇ = 0, 1, 2, 3 and 4. 

E. Coefficient of Discrete Tchebichef Transform 
Coefficients of DTT of order n = 256 sample data are 

given as follow formula: 
TC = S (12)

 

ێێۏ
ۍێ ଴(0)ݐ ଵ(0)ݐ଴(1)ݐ     ଵ(1)ݐ     ଴(2)ݐ   ݊)଴ݐ   ⋯  − ⋯ ଵ(2)ݐ    (1 ݊)ଵݐ    − ଶ(0)ݐ(1 ௡ିଵ(0)ݐ⋮ଶ(1)ݐ ௡ିଵ(1)ݐ⋮ ଶ(2)ݐ ⋯ ݊)ଶݐ    − ௡ିଵ(2)ݐ⋮ (1 ⋱⋯ ݊)௡ିଵݐ⋮ − ۑۑے(1

ېۑ
ێێێۏ
ۍ ܿ଴ܿଵܿଶ⋮ܿ௡ିଵۑۑۑے

ې = ێێێۏ
ۍ ۑۑۑے௡ିଵݔ⋮ଶݔଵݔ଴ݔ

ې
 

          
where C is the coefficient of Discrete Tchebichef Transform, 
which represents ܿ଴, ܿଵ, ܿଶ, … , ܿ௡ିଵ. T is matrix computation 
of Discrete Orthonormal Tchebichef Polynomials ݐ௞(݊)  for ݇ = 0, 1, 2, … , ܰ − 1.  S is the sample of speech signal 
window which is given by (0)ݔ, ,(1)ݔ ,(2)ݔ … , ݊)ݔ − 1). The 
coefficient of DTT is given in as follows; ܥ = ܶିଵܵ (13)
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IV. EXPERIMENT RESULTS 

A. Speech Signal Coefficient of DTT   
The speech signal of vowel ‘O’ and consonant ‘RA’ using 

1024 discrete orthonormal Tchebichef polynomials are 

shown on the left of Fig. 7 and Fig. 8. Next, speech signal of 
vowel ‘O’ and consonant ‘RA’ using 256 discrete 
orthonormal Tchebichef polynomials are shown on the right 
of Fig. 7 and Fig. 8.     

 
 

Figure 7. Coefficient of DTT for 1024 sample data (left) and coefficient of DTT for 256 sample data (right) for speech signal of vowel ‘O’. 

 

Figure 8. Coefficient of DTT for 1024 sample data (left) and coefficient of DTT for 256 sample data (right) for speech signal of consonant ‘RA’. 

 

B. Spectrum Analysis 
Spectrum analysis is the absolute square value of the 

speech signal, so the values are never negative. The 
spectrum analysis using DTT can be defined in the 
following equation: ݌(݇) = |ܿ(݊)|ଶ (14)
 

 
where ܿ(݊) is coefficient of discrete Tchebichef transform. 
The spectrum analysis using 1024 DTT and 256 DTT of the 
vowel ‘O’ and the consonant ‘RA’ is shown in Fig. 9 and 
Fig. 10 respectively.  
 
 

 

Figure 9. Coefficient of DTT for 1024 sample data (left) and coefficient of DTT for 256 sample data (right) for spectrum analysis of vowel ‘O’. 
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Figure 10. Coefficient of DTT for 1024 sample data (left) and coefficient of DTT for 256 sample data (right) for spectrum analysis of consonant ‘RA’. 

C. Frequency Formants 
The unique of each vowel and consonant are measured by 

frequency formants. Formants are a characteristic resonant 
region of a sound. Formants are exactly the resonant 
frequencies of vocal tract [14]. The frequency formants of 
the vowel ‘O’ and the consonant ‘RA’ have been extracted 
using 256 DTT as presented in Fig. 11 and Fig. 12. 

Figure 11. Frequency Formants of Vowel ‘O’ using 256 DTT. 
 

Figure 12. Frequency Formants of Consonant 'RA' using 256 DTT. 

The frequency formants are detected by autoregressive 
model. The formants of the autoregressive curve are found 
at the peaks using a numerical derivative. The spectral 
properties of the vowels were represented through measures 

of first formant F1, second formant F2 and third formant F3. 
These vector positions of the formants are used to 
characterize a particular vowel. The frequency formants of 
the vowel ‘O’ and the consonant ‘RA’ using 256 DTT, 1024 
DTT and 1024 sample data FFT computation are shown in 
Table I and Table II respectively.    

TABLE I. FREQUENCY FORMANTS OF VOWEL ‘O’  

Vowel ‘O’ DTT FFT 
256 1024 1024 

F1 430 441 527 
F2 645 710 764 
F3 3316 3186 3219 

TABLE II. FREQUENCY FORMANTS OF CONSONANT ‘RA’  

Consonant 
‘RA’ 

DTT FFT 
256 1024 1024 

F1 645 624 661 
F2 1335 1248 1301 
F3 2196 2131 2160 

D. Time Taken Performance 
The comparison time taken performance among 256 DTT 

coefficient, 1024 DTT coefficient and Fast Fourier 
Transform computation for 1024 sample data of vowel 'O' 
and consonant 'RA' is presented in Table III. Next, the time 
taken of speech recognition performance using 256 DTT, 
1024 DTT and FFT is shown in Table IV. 

TABLE III. TIME TAKEN OF DTT COEFFICIENT AND FFT 
Vowel and 
Consonant 

DTT FFT 
256 1024 1024 

Vowel ‘O’ 0.001564 sec 0.011889 sec 0.095789 sec 
Consonant ‘RA’ 0.001605 sec 0.027216 sec 0.102376 sec 

TABLE IV. TIME TAKEN OF SPEECH RECOGNITION PERFORMANCE 
USING DTT AND FFT 

Vowel and 
Consonant 

DTT FFT 
256 1024 1024 

Vowel ‘O’ 0.557000 sec 0.903968 sec 0.587628 sec 
Consonant ‘RA’ 0.557410 sec 0.979827 sec 0.634997 sec 

V. COMPARATIVE ANALYSIS 
The speech signal of the vowel ‘O’ and consonant ‘RA’ 

using 256 DTT as shown on the right of Fig. 7 and Fig. 8 
produce simpler output in spectral frequency than speech 
signal using 1024 DTT. Next, Spectrum analysis of the 
vowel ‘O’ and consonant ‘RA’ using 1024 DTT on the left 
of Fig. 9 and Fig. 10 produce a lower power spectrum than 
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256 DTT. Next, spectrum analysis of vowel ‘O’ and 
consonant ‘RA’ using 256 DTT on the right of Fig. 9 and 
Fig. 10 produce simpler output than 1024 DTT.  

The frequency formants of vowel ‘O’ for sixteen frames 
are shown in the Fig. 11. According observation are 
presented in the Fig. 11, the first formant F1 on frame 16 is 
not detected. The second formant F2 on first frame and sixth 
frame are not captured. Next, the third formant F3 of vowel 
‘O’ for sixteen frames, the frequency formants are detected 
on each frame respectively. According observation 
frequency formants of consonant ‘RA’ are shown in the Fig. 
12, the first formant F1 and third formant F3 are detected on 
sixteen frames, while the second formants F2 on fifth and 
seventh frame are not captured.  

Frequency formants as presented in Table 1 and Table 2 
show those frequency formants of vowel ‘O’ and consonant 
‘RA’ using 256 DTT produce similar identical output with 
frequency formants using 1024 DTT and FFT. The 
comparison time taken of 256 DTT coefficients, 1024 DTT 
coefficient, and FFT is represented in the Table 3. 
According to observation as presented in Table 3, the time 
taken of 256 DTT is computationally efficient than 1024 
DTT and FFT. Next, speech recognition performance of 256 
DTT produces the efficient time taken than 1024 DTT and 
FFT.  

The Discrete Tchebichef Transform that developed in this 
paper is smaller computations. The experiment result have 
shown that the propose 256 Discrete Tchebichef Transform 
algorithm efficiently reduces the time taken to transform 
time domain into frequency domain. The efficient of 256 
Discrete Tchebichef Transform is much higher than 1024 
Discrete Tchebichef Transform in terms of speech 
recognition performance. 

FFT algorithm produces the time complexity  .(݊݃݋݈݊)ܱ 
Next, the computation time of DTT produce time 
complexity  ܱ(݊ଶ) . For the future research, DTT can be 
upgraded to reduce the time complexity from ܱ(݊ଶ) to be ܱ(݊ log ݊)  using convolution algorithm. DTT can increase 
the speech recognition performance in terms getting 
frequency formants of a speech. 
 

VI. CONCLUSION 
As a discrete orthonormal transform, 256 Discrete 

Tchebichef Transform has a potential to perform faster and 
computationally more efficient than 1024 Discrete 
Tchebichef Transform. A 256 DTT produces simpler output 
in spectral frequency than DTT which takes in 1024 sample 
data. On one hand, FFT is computationally complex 
especially with imaginary numbers. On the other hand, DTT 
consumes simpler and faster computation with involves only 
algebraic expressions and the Tchebichef polynomial matrix 
can be constructed easily using a set of recurrence relations. 
Spectrum analysis using 256 DTT produces four formants 
F1, F2, F3 and F4 concurrently in spectrum analysis for 
consonant. The frequency formants using 1024 DTT and 
256 DTT are compared. They have produced relatively 
identical outputs in terms of frequency formants for speech 
recognitions. 

REFERENCES 
[1]   J.A. Vite-Frias, Rd.J. Romero-Troncoso and A. Ordaz-Moreno, 

“VHDL Core for 1024-point radix-4 FFT Computation,” 
International Conference on Reconfigurable Computing and FPGAs, 
Sep. 2005, pp. 20-24.  

[2]  D.H. Bailey and P.N. Swarztrauber, “A Fast Method for Numerical 
Evaluation of Continuous Fourier and Laplace Transform,” Journal 
on Scientific Computing, Vol. 15, No. 5, Sep. 1994, pp. 1105-1110. 

[3]   R. Mukundan, “Improving Image Reconstruction Accuracy Using 
Discrete Orthonormal Moments,” Proceedings of International 
Conference on Imaging Systems, Science and Technology, June 2003, 
pp. 287-293. 

[4]   R. Mukundan, S.H. Ong and P.A. Lee, “Image Analysis by 
Tchebichef Moments,” IEEE Transactions on Image Processing, Vol. 
10, No. 9, Sep. 2001, pp. 1357–1364. 

[5]  F. Ernawan, N.A. Abu and N. Suryana, “Spectrum Analysis of 
Speech Recognition via Discrete Tchebichef Transform,” 
Proceedings of International Conference on Signal and Information 
Processing, Dec. 2010, pp. 395-399.  

[6]  N.A. Abu, W.S. Lang and S. Sahib, “Image Super-Resolution via 
Discrete Tchebichef Moment,” Proceedings of International 
Conference on Computer Technology and Development (ICCTD 
2009), Vol. 2, Nov. 2009, pp. 315–319. 

[7]  M. Tuceryan, “Moment Based Texture Segmentation,” Pattern 
Recognition Letters, Vol. 15, July 1994, pp. 659-668. 

[8]  L. Zhang, G.B. Qian, W.W. Xiao and Z. Ji, “Geometric Invariant 
Blind Image Watermarking by Invariant Tchebichef Moments,” 
Optics Express Journal, Vol. 15, No. 5, Mar. 2007, pp. 2251-2261. 

[9]  R. Mukundan, “Some Computational Aspects of Discrete 
Orthonormal Moments,” IEEE Transactions on Image Processing, 
Vol. 13, No. 8, Aug. 2004, pp. 1055-1059. 

[10]  N.A. Abu, W.S. Lang, N. Suryana and R. Mukundan, “An Efficient 
Compact Tchebichef moment for Image Compression,” 10th 
International Conference on Information Science, Signal Processing 
and their applications (ISSPA2010), May 2010, pp. 448-451. 

[11]  F. Ernawan, N.A. Abu and N. Suryana, “The Efficient Discrete 
Tchebichef Transform for Spectrum Analysis of Speech Recognition,” 
Proceedings 3rd International Conference on Machine Learning and 
Computing, Vol. 4, Feb. 2011, pp. 50-54.  

[12]   S. Rapuano and F. Harris, “An Introduction to FFT and Time 
Domain Windows,” IEEE Instrumentation and Measurement Society, 
Vol. 10, No. 6, Dec. 2007, pp. 32-44. 

[13]  J.H. Esling and G.N. O'Grady, “The International Phonetic Alphabet,” 
Linguistics Phonetics Research, Department of Linguistics, 
University of Victoria, Canada, 1996. 

[14]  A. Patil, C. Gupta, and P. Rao, “Evaluating Vowel Pronunciation 
Quality: Formant Space Matching Versus ASR Confidence Scoring,” 
National Conference on Communication (NCC), Jan. 2010, pp. 1-5. 

 
 
 

Ferda Ernawan received Master Student Degree 
in Software Engineering and Intelligence from the 
Faculty of Information and Communication 
Technology, Universiti Teknikal Malaysia Melaka 
(UTeM). He received the Bachelor Student Degree 
in Information Technology from Universitas Dian 
Nuswantoro (UDINUS), Semarang, Indonesia in 
2009.  His research interests are in the areas audio 
processing, image processing and their applications. 

 
 
 

Nur Azman Abu is currently serving as a senior 
lecturer at Faculty of ICT, Universiti Teknikal 
Malaysia Melaka (UTeM). He obtained his 
bachelor and master degree from Purdue 
University in 1992 and 1994 both in Mathematics. 
He is currently undergoing his PhD program at 
Universiti Teknikal Malaysia, Melaka. His 
current interests include cryptography, random 

number generation, image processing and TSP. 

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

6


